
 

 

GEN-1022-1 

 

Annual General Conference 
Assemblée générale annuelle 

 
Edmonton, Alberta 

June 6-9, 2012 / 6 au 9 juin 2012  
 

Coupling of Random Field Theory and the Discrete Element 
Method in the Reliability Analysis of Geotechnical Problems 

V. D. H. Tran, M. A. Meguid, L.E. Chouinard 
Department of Civil Engineering and Applied Mechanics, McGill University 

Abstract: An efficient algorithm to create discrete element samples with predefined properties 
incorporating the random field theory is introduced in this paper. The algorithm considerably 
reduces the time needed to generate a large scale domain as only a small initial sample with 
dynamic packing is used. Three-dimensional anisotropic random fields are generated using the 
Local Average Subdivision (LAS) method accounting for the spatial variability. The random fields 
are then mapped on the discrete element domain and uncertain parameters of each particle are 
obtained from the corresponding random field cell. Triaxial tests are conducted on large soil 
samples with the dimensions of 1.5m x 3.0m x 1.5m comprising over 150,000 spherical particles. 
The normal and tangential stiffnesses of the particles are selected as random variables since they 
have a significant effect on the soil behavior under triaxial testing conditions. Monte Carlo 
simulation is implemented to analyze the probabilistic features of the output values. The results of 
parametric studies are also presented.  

1. Introduction 

Soil properties at each location within the soil mass are considered to be random variables and 
typically exhibit considerable variation from point to point. Therefore, it is essential to consider the 
spatial variability of the soil domain. Neglecting the spatial variability may lead to the 
underestimation or overestimation of the probability of unsatisfactory performance. Traditional 
methods often neglect the spatial variability or consider it in approximate ways. Popular methods 
such as the First-Order Second Moment Method and the First-Order Reliability Method do not 
consider the spatial variability. Moreover, they have some other limitations regarding their 
approximate assumptions of performance function derivation. Although the Point Estimate 
Method is being widely used in geotechnical engineering, it still neglects the spatial variability and 
does not provide detailed information of the output distribution.  

Numerical methods have been intensively implemented to solve complicated geotechnical 
problems with nonlinear and implicit performance function and recent development in numerical 
methods has made it more feasible to combine reliability analysis with numerical simulations. 
Schweiger et al. (2001) proposed a framework in which the Point Estimate Method was used in 
conjunction with the deterministic Finite Element Method to analyze the probabilistic behavior of a 
sheet-pile wall and tunnel excavation process. Although this approach accounts for soil variability 
in the deterministic finite element method, it does not consider the spatial variability of soil 
properties. Schweiger and Peschl (2005) used the Random Set Finite Element Method to take 
into account the spatial correlation in an approximate way. However, spatial variation can be 
better represented by random field theory. The Random Finite Element Method proposed by 
Griffiths and Fenton (1993) which combines random field theory and Monte-Carlo simulation has 
been successfully used for some geotechnical problems such as bearing capacity, settlement, 
pillar stability, steady seepage and slope stability. 
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An alternative numerical method that can be used for geotechnical problems is the Discrete 
Element Method (DEM). The method proposed by Cundall and Strack (1979) has proven to be a 
versatile approach for the simulation of granular materials. This method can overcome difficulties 
that can not be fully solved using the Finite Element Method, especially those related to the 
behavior of granular soils under large deformations. Suchomel and Mašin (2010) suggested that 
random field theory can be combined with the DEM. This method, however, has hardly been 
applied in conjunction with reliability analysis partly due to the large computational time required 
and the limitation of current computer capacity. Hsu and Nelson (2006) used this approach for the 
slope stability analysis of weak rock masses. The spatial variability of material properties was 
considered with random field elements embedded in the numerical analyses. The rock mass was 
simulated using two dimensional (2D) discrete elements with a maximum of 10 different material 
properties available in the UDEC program. This limitation did not allow a proper representation of 
the spatial variability of material properties.  

There are several issues that have to be considered when implementing reliability analysis with 
the DEM: (1) spatial variability has to be considered in the discrete element model to represent 
real condition, (2) the total computational time required for the packing process of a large-scale 
model should be acceptable, and (3) the random field of material properties has to be mapped 
onto the discrete element domain defined by the packing algorithm. This paper presents an 
algorithm that satisfies these criteria.  

In this study, the packing algorithm suggested by Dang and Meguid (2010) is adopted since it 
allows for the generation of three-dimensional (3D) packing models with pre-defined properties 
and the time required to create large-scale domains is reduced considerably. The particle domain 
obtained with this technique is meshed into a user-defined 3D grid to which the anisotropic 
random fields are assigned using the Local Average Subdivision Method (LAS) proposed by 
Fenton and Vanmarcke (1990). Triaxial test simulations are performed to demonstrate the effect 
of material variability on the behavior of soil samples.  

2. Generation of the Particle Domain 

2.1 Packing Algorithm 

The packing procedure consists of two phases: in phase 1, a relatively small size initial packing is 
first generated with a predefined grain size distribution and target porosity. The final packing is 
then generated in phase 2 by assembling the small samples using the “flip technique” to maintain 
the same grain size distribution and porosity (Dang and Meguid 2010). 

The details of each phase are as follow:  

Phase 1: The dimensions of a box for the initial packing are denoted in the x, y and z directions 
as (bx x by x bz). A number of non-overlapping particles are then generated inside the box with the 
dimensions of (bx x hy x bz) where the height hy of the box is larger than by to ensure that all 
particles can settle under gravity into the box. Additional particles are generated until the target 
volume of all particles is reached. 

In order to obtain the initial packing with a predefined particle size distribution, the radius of a 
particle i is randomly generated from the grain size distribution: 
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where ri is the radius of particle i, RANi is a uniformly distributed random number generated in the 
range 0 ≤ RANi < 1, P1 and P2 are the percentage of grains (%) passing through sieves S1 and S2 
such that P1 ≤ 100.RANi < P2, sieve S1 and S2 are then specified by P1 and P2, D1 and D2 are the 
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diameters of sieves S1 and S2. After the packing reaches the stability condition, it is still a loose 
structure. A compaction procedure with a combination of shaking and vertical compression is 
applied in order to obtain the target porosity. Phase 1 continues until the initial packing satisfies 
the stability condition.  

Phase 2: The “flip technique” is implemented in this phase to overcome the large amount of 
computation associated with the dynamic packing method. The technique is a 3D process and is 
illustrated in Figure 1: 

The final packing space with the dimensions of (px x py x pz) is divided into (nx x ny x nz) domains. 
An initial packing S0 (bx x by x bz) generated using the technique described in phase 1 is cloned 
repeatedly to obtain a final packing with similar properties. All particles which were initially in 
contact with the walls now become in contact with other particles in the final packing.  

The initial packing S0 is first placed into the lower left corner of the domain. Block Syz, obtained by 
flipping S0 around the y-z plane, is placed to the right of sample S0. A second sample S0 is then 
placed to the right of Syz and the process is repeated until the first row is completed. The entire 
first row is then flipped around the x-z plane in a similar process to obtain the second row, and 
the process is repeated to generate the first slice consisting of (nx x ny) small blocks in nx columns 
and ny rows. The first slice is flipped around the x-y plane to generate the second slice, and the 
final packing is obtained by repeating the process. Finally, the final packing is allowed to reach 
the stability condition. 

In order to identify the position of a particle in the soil sample grid, each particle is marked by the 
block from which it is generated. A block that is of slice k, row j and column i within that row is 
noted as (i, j, k); all spheres of that block are then identified by (i, j, k).  

 

Figure 1: Flip technique to obtain the final packing 

2.2 Packing Process 

The above packing algorithm is used to generate a soil sample, which has the dimensions of 
1.5m width, 3.0m height and 1.5m depth. The soil mass is formed from 6 x 12 x 6 = 432 small 
initial blocks, each block is cubic with the dimensions of 0.25m x 0.25m x 0.25m. 
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A simple contact law is applied in this study to calculate contact forces. The force vector F


 which 
represents the interaction between two particles is decomposed into normal and tangential 
forces: 

[2]  sssnnn Δ.δKFδ ,Δ.KF
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Where nF


and sF


 are the normal and tangential forces; Kn and Ks are the normal and tangential 

stiffnesses at the contact; sΔδ


 is the incremental tangential displacement and nΔ


 is the normal 

penetration between the two particles. 

Kn and Ks are defined by the following equations: 
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where kn and ks are the normal and tangential stiffnesses of two contact particles A and B, 
respectively; r is the average radius of the two particles.  

The particles are assumed to have properties of granular material with no cohesion. The target 
porosity of the sample is 0.40. The target grain size distribution is given in Table 1 and the 
material properties of the particles during the packing process are given in Table 2. 

Table 1: Grain size distribution        Table 2:  Material properties for the packing process 

Sieve diameter 
(mm) 

% passing 
(number) 

Parameter Value 

10 0 Particle density (kg/m3) 2600 

20 0 Particle normal stiffness kn (Pa) 9 x 108 

40 31.47 Ratio ks/kn 0.1 

100 90.93 Friction angle   (degrees) 32 

160 99.64 Box’s Poisson’s ratio 0.2 

200 100 Box’s friction (degrees) 0 

3. Random Field Generator 

Several approaches have been proposed to generate spatially varying random fields including the 
Turning Bands Method, the Cholesky decomposition technique and the Local Average 
Subdivision Method (Fenton and Vanmarcke 1990). The LAS method has been chosen in this 
study as it allows for the implementation in numerical methods. In addition, it generates a discrete 
grid of local averages of a standard Gaussian random field and represents a random field 
accurately even for coarse meshes. 

In this study, the normal stiffness kn and the tangential stiffness ks of particles are assumed to be 
random variables since they have a great influence on the behavior of soil samples (Belheine et 
al. 2009). The normal and tangential stiffnesses are assumed to follow lognormal distributions. 
Since the cross correlation between kn and ks is usually not well known, the two stiffnesses are 
assumed to be perfectly correlated for the sake of simplicity. The ratio ks/kn is kept constant for all 
particles, which means only the random field of kn is initially generated by the random field 
generator and the random field of ks is obtained directly from kn.  
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The distribution of kn is characterized by the mean
nkμ , the standard deviation 

nk and the 

correlation lengths. A log-normally distributed random field of kn is given by: 

[4]  )}x~(Gσexp{μ)x~(k ilnklnklnkin nnn
                

where ix is the spatial position at which kn is desired; )x~(G ilnkn
is a normally distributed random 

field with zero mean, unit variance and given correlation lengths.  

The two parameters 
nlnkμ and 

nlnkσ are obtained from the lognormal distribution transformations: 
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where 
nkCOV is the coefficient of variation of kn.  

The random field )x~(G ilnkn  
is generated using the 3-D Markovian correlation function: 
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where xτ , yτ  and zτ  are the three components of the distance between two points in the 

random field; (x)θ
nlnk , (y)θ

nlnk  and (z)θ
nlnk  are the correlation lengths in x, y and z direction. 

These correlation lengths account for the anisotropic character of the random field and represent 
the distance over which the spatially random variables tend to have significant correlation. The 
horizontal correlation length is chosen greater than the vertical due to the fact that soil generated 
from a deposition process has strong variability in the vertical direction. It should be noted that the 
spatial correlation structure of soil domains, especially in the horizontal direction is usually not 
well known and requires a large amount of site exploration which is not always feasible. 
Therefore, the vertical correlation length is varied in this study from 0.01 m (much smaller than 
the soil sample size) to 10.0 m (larger than the soil sample size) and the horizontal correlation 
length is kept 10 times greater than the vertical; the value of 

nkCOV  is ranged from 0.4 to 2.0 

while the mean value is kept constant as shown in Table 3. 

In order to assign different realizations of the random field to the discrete element grid, the 
random field grid is made identical to the grid of the soil sample. Each random field is composed 
of 6 x 12 x 6 cells in the x, y and z direction, respectively. The dimensions of each cell are 0.25m 
x 0.25m x 0.25m, which are the same size as the initial packing of the sample. 

Table 3:  Probabilistic description for the random variables  

Parameter Value

Type of distribution Lognormal 

Mean 
nk  (Pa) 9 x 108 

nkCOV  0.4, 0.8, 1.2, 1.6, 2.0 

Vertical correlation length (y)θ
nlnk  (m)  0.01, 0.1, 0.5, 1.0, 10.0 

Horizontal correlation length (z)θ(x)θ
nn lnklnk    (m)  0.1, 1.0, 5.0, 10.0, 100.0 
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4. Numerical Simulation 

Both the packing algorithm and the random field generator were implemented inside the open 
source code YADE (Kozicki and Donze 2008) to generate random soil samples. As the main 
purpose of this study is to examine the spatial variability of kn and ks, generated random samples 
should allow for the variability of kn and ks while keeping other parameters constant. Since the 
random generation of particles is used in the packing procedure to maintain the structure of the 
final packing, the final assembly is obtained by executing the packing procedure only once using 
the mean value of kn and ks.  

In the first phase of the packing process, an initial packing that consists of 351 particles is 
generated. The porosity of the initial packing at the end of phase 1 is 0.395 which is close to the 
target porosity of 0.40. The expected grain size distribution of the packing is also achieved using 
Eq. 1. The final packing comprises 151,632 particles at the end of the second phase of the 
packing procedure and the properties of the initial packing are preserved through the flipping and 
cloning process. It can be seen from Figure 2 that the stresses xx , yy  and zz  in the x, y and z 

directions generally satisfy the expected geostatic stress distribution. Note that the dynamic 
packing procedure is applied only for the initial sample, and therefore, the total simulation time is 
greatly reduced. The entire packing process which requires nearly 72 hours using a personal 
computer is rather efficient compared to the time that would be required for packing a similar 
sample with over 150,000 particles.  

Figure 2:  Contours of the stress distribution (in Pa) 

The random field generator is then activated to generate several hundred sets of random fields 
for the normal stiffness kn which are mapped on the final sample created by the packing process. 
Note that each sphere in the soil sample is marked by its identification generated from phase 2 of 
the packing procedure and the grid of the random field is identical to the grid of the soil sample, 
making it possible to connect the sphere with its corresponding random cell. The normal stiffness 
of each spherical particle is re-assigned the value of its corresponding random field cell, and the 
tangential stiffness ks is set as a function of the specified ratio ks/kn. Particles that are created in 
the same block are assigned the same values for kn and ks. 

Figure 3b and 3c show two typical soil samples corresponding to m 1.0(y)θ
nlnk  and 

m 0.1(y)θ
nlnk  as large and small correlation lengths, respectively. Lighter shaded regions 

indicate smaller kn while darker shaded regions indicate larger kn. The effect of the correlation 
lengths is also evident: the smaller correlation lengths of the sample in Figure 3c leads to larger 
spatial variation of kn compared to the sample in Figure 3b. In both cases, the larger horizontal 
correlation length results in more uniform kn in the horizontal direction compared to the vertical 
direction.  

a) Sxx b) Syy c) Szz 
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Figure 3: (a) Soil sample configuration. (b) A random soil sample with m 1.0(y)θ
nlnk   (c)  A 

random soil sample with m 0.1(y)θ
nlnk   

The effects of the variability of material properties are analyzed using Monte Carlo simulation. 
Numerical triaxial tests are performed on the randomly generated soil samples to analyze the 
probabilistic properties of the response. In each triaxial test, the sample is first compressed 
isotropically under a specified confining pressure. After the stability condition is reached, an 
additional strain rate of 0.1 is applied to the top surface while the pressures on the side walls are 
kept constant. The confining stress of 100 kPa is used in the analysis.  

It can be seen from deterministic studies that the modulus E50 of the sample, which is obtained 
from the axial strain - deviator stress relationship at 50% of the maximum deviator stress, is 
highly dependent on the microscopic parameter kn. Consequently the probabilistic analysis in this 
paper is performed related to this value. Note that if the packing procedure is used every time kn 
is changed, soil samples with different packing structures are obtained and the macro-micro 
relationship may be different. The importance of the packing structure on the macro-micro 
relationship is beyond the scope of this study. 

For each case of analysis, Monte Carlo simulations were performed for 250 realizations of 
random fields followed by the discrete element analysis of triaxial tests. Note that the number of 
realizations is limited by the execution time required for a single run (a numerical triaxial test 
requires about 5 hours on a personal computer with Core i7 Processor 2.8 GHz).  It is seen that 
the mean and standard deviation are quite stable for the sample size of 250. 

5. Probabilistic Analyses 

5.1 Distribution Fitting 

A histogram of E50 is shown in Figure 4a. The shape of the histogram suggests a lognormal 
distribution. The fitted lognormal distribution, with parameters defined by the mean E50μ  and the 

standard deviation E50σ , is given in the histogram. A statistical analysis indicates a good fit when a 

lognormal distribution is assumed. Both the Chi-Square goodness-of-fit test (p-value of 69.4%) 

0.05 strain rate 

pz=1.5 m px=1.5 m 
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and the P-P plot demonstrate that the lognormal distribution is a good choice for the modulus E50 
(Figure 4b). This is to be expected since the input random parameters kn and ks are log-normally 
distributed.   

 

Figure 4: (a) A histogram of modulus E50.   (b) Probability-Probability (P-P) plot for lognormal 

distribution fitting ( m 1.0(y)θ 0.8,COV
nn lnkk  ) 

5.2 Parametric Studies 

As shown in Figure 5, the mean of E50 decreases for all correlation lengths when the coefficient of 
variation of kn increases. This reduction implies that the macroscopic modulus is smaller than the 
deterministic modulus when spatial variability of soil properties is considered. E50μ is also 

depends on correlation lengths. The maximum value of E50μ  is obtained at an intermediate 

vertical correlation length of about 0.5 m. It can be hypothesized that this vertical correlation 
length results in a "rough" soil domain with high macroscopic modulus while larger or smaller 
correlation lengths lead to smaller macroscopic modulus.  When 0(y)θ

nlnk  , the local averaging 

causes kn to tend to its median which is )exp(μ
nlnk everywhere in the domain. For the case

(y)θ
nlnk , there is no local averaging and the soil properties are spatially constant for each 

realization while varying from realization to realization. The mean value E50μ in this case can be 

calculated with kn selected randomly from a lognormal distribution with a given mean and 
standard deviation.  

Figure 6 illustrates the variation of the standard deviation of E50 as a function of 
nkCOV and

(y)θ
nlnk . 50E increases with the rise of 

nkCOV  and (y)θ
nlnk , and the largest value is achieved 

when (y)θ
nlnk . Due to the local averaging, the standard deviation of E50 decreases when the 

correlation lengths are reduced. When 0(y)θ
nlnk  , the variance of kn tends to zero since the 

local averaging results in a constant value for each simulation. 
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Figure 5: Variation of E50μ  with 
nkCOV and (y)θ

nkln  

 

Figure 6: Variation of E50  with 
nkCOV and (y)θ

nkln  
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6. Summary and Conclusions 

In this study, a framework to combine random field theories and the discrete element method to 
analyze the behavior of soil structures under spatially varying properties was presented. A triaxial 
testing of spatially varying soil samples with anisotropic, log-normally distributed random fields 
was performed. Using Monte Carlo simulation, histograms and type of distributions for output 
parameters were discussed. It was seen that lognormal distribution is a good approximation for 
the macroscopic modulus E50.  

As the coefficient of variation of the particle normal stiffness increases, the expected macroscopic 
modulus decreases while the standard deviation and the coefficient of variation tend to rise. 
Increasing the correlation lengths also leads to the positive behavior of the standard deviation of 
E50. The mean of E50, on the other hand, rises from small values of correlation lengths to its peak 
value at the vertical correlation length (y)θ

nlnk  
of about 0.5 m and then falls as (y)θ

nlnk  
is greater 

than 0.5 m. 

The algorithm has some advantages in creating 3D discrete element domains accounting for the 
spatial variability of the properties. The time required to create a 3D soil sample is greatly 
reduced, 3D random fields of soil properties which are anisotropic and spatially varied can be 
easily mapped on the soil domain, and the 3D random field generator is embedded into the 
discrete element code. The proposed algorithm has proved to be efficient and can be 
implemented to solve other geotechnical problems by coupling reliability analysis and the discrete 
element method.  
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